Operational Representation of Certain Hypergeometric Functions by Means of Fractional Derivatives and Integrals

نویسندگان

  • Manoj Singh
  • Mumtaz Ahmad Khan
  • Abdul Hakim Khan
چکیده

The investigation in the present paper is to obtain certain types of relations for the well known hypergeometric functions by employing the technique of fractional derivative and integral. Mathematics Subject Classification(2010): Primary 42C05, Secondary 33C20, 26A33. Keywords—Fractional Derivatives and Integrals, Hypergeometric functions. THE names fractional calculus is concerned with the generalization of differentiation and integration to fractional order. There are number of ways of defining fractional derivatives and integrals. We begin by recalling S.F. Lacroix [9] definition of mth derivatives for y = x, where n is a positive integer as dy dxn = (m!) (n−m)! n−m (1) A vital development in the field of fractional calculus was laid down by L. Euler, N.H. Abel, J. Liouville, and B. Riemann. For the function f(x), expanded in series form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative

The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...

متن کامل

A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus

In a joint paper with Srivastava and Chopra, we introduced far-reaching generalizations of the extended Gammafunction, extended Beta function and the extended Gauss hypergeometric function. In this present paper, we extend the generalized Mittag–Leffler function by means of the extended Beta function. We then systematically investigate several properties of the extended Mittag–Leffler function,...

متن کامل

Study on multi-order fractional differential equations via operational matrix of hybrid basis functions

In this paper we apply hybrid functions of general block-pulse‎ ‎functions and Legendre polynomials for solving linear and‎ ‎nonlinear multi-order fractional differential equations (FDEs)‎. ‎Our approach is based on incorporating operational matrices of‎ ‎FDEs with hybrid functions that reduces the FDEs problems to‎ ‎the solution of algebraic systems‎. ‎Error estimate that verifies a‎ ‎converge...

متن کامل

On Hadamard and Fej'{e}r-Hadamard inequalities for Caputo $small{k}$-fractional derivatives

In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.

متن کامل

Some new results using Hadamard fractional integral

Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order. The purpose of this work is to use Hadamard fractional integral to establish some new integral inequalities of Gruss type by using one or two parameters which ensues four main results . Furthermore, other integral inequalities of reverse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015